\newcommand{\dif}{\mathop{}\!\mathrm{d}} \int_{0}^{1}\ln(1+x)\dif x
i\hbar\frac{\partial}{\partial t}\Psi(t)=E\Psi
\hbar^2\nabla^2\Psi=2(E-V)\Psi
·
\newcommand{\dif}{\mathop{}\!\mathrm{d}} \int_{0}^{1}\ln(1+x)\dif x
i\hbar\frac{\partial}{\partial t}\Psi(t)=E\Psi
\hbar^2\nabla^2\Psi=2(E-V)\Psi